Some matrix rearrangement inequalities
نویسندگان
چکیده
منابع مشابه
Some Matrix Rearrangement Inequalities
We investigate a rearrangement inequality for pairs of n × n matrices: Let ‖A‖p denote (Tr(A∗A)p/2)1/p, the C trace norm of an n×n matrix A. Consider the quantity ‖A+B‖p+‖A−B‖p. Under certain positivity conditions, we show that this is nonincreasing for a natural “rearrangement” of the matrices A and B when 1 ≤ p ≤ 2. We conjecture that this is true in general, without any restrictions on A and...
متن کاملOn some matrix inequalities
The arithmetic-geometric mean inequality for singular values due to Bhatia and Kittaneh says that 2sj(AB ∗) ≤ sj(A∗A + B∗B), j = 1, 2, . . . for any matrices A,B. We first give new proofs of this inequality and its equivalent form. Then we use it to prove the following trace inequality: Let A0 be a positive definite matrix and A1, . . . , Ak be positive semidefinite matrices. Then tr k ∑
متن کاملOn Some Matrix Trace Inequalities
A is further called positive definite, symbolized A > 0, if the strict inequality in 1.1 holds for all nonzero x ∈ C. An equivalent condition forA ∈ Mn to be positive definite is thatA is Hermitian and all eigenvalues of A are positive real numbers. Given a positive semidefinite matrix A and p > 0, A denotes the unique positive semidefinite pth power of A. Let A and B be two Hermitian matrices ...
متن کاملRelative rearrangement and interpolation inequalities
We prove here that the Poincaré-Sobolev pointwise inequalities for the relative rearrangement can be considered as the root of a great number of inequalities in various sets not necessarily vector spaces. In particular, new interpolation inequalities can be derived. Reordenamiento relativo y desigualdades de interpolación Resumen. Mostramos que las desigualdades puntuales de Poincaré-Sobolev pa...
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2005
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-004-0147-z